If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-1520=0
a = 1; b = -8; c = -1520;
Δ = b2-4ac
Δ = -82-4·1·(-1520)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-32\sqrt{6}}{2*1}=\frac{8-32\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+32\sqrt{6}}{2*1}=\frac{8+32\sqrt{6}}{2} $
| 8/n+6=10/6 | | 3^3x+1=81^x+2 | | 5n*7=3n-1 | | 22a+96-13a=18-9a+8 | | 4x+2(6x+20)=8 | | x2+6x-40=0. | | (80-8x)/2=8x | | -9m-2=-7m-6 | | 41-2x+7x+5=360 | | x=48x+56 | | -85=-7+3(-6n+4) | | 41-2x+7x+5=180 | | 9x-53=5x+52 | | 5x-16=4x | | x=8(7x+6) | | 8x=(80-8x)/2 | | -105=-3(4n+7) | | 16(x/16)=16(7/10) | | 6x-200=17,700 | | x=8(13x) | | 8x-17)=(5x+52=180 | | 5(-5b+7)-1=-141 | | 13x+60+4x+93=90 | | 8x-17)=(5x+52 | | 13x+60+4x+93=180 | | x2+9999=23 | | -2m=-m+10 | | 13x+60=4x+93 | | 6x+200=17,700 | | 2(x-3)+3(x-1)=2x-3 | | 7x-200=17,700 | | (8x-17=5x+52 |